This work deals with the nonlinear stability of the elliptical restricted three-body problem with oblate and radiating primaries and the oblate infinitesimal. The stability has been analyzed for the resonance cases around ω1=2ω2 and ω1=3ω2 and also the nonresonance cases. It was observed that the motion of the infinitesimal in this system shows instable behavior when considered in the third order resonance. However, for the fourth order resonance the stability is shown for some mass parameters. The motion in the case of nonresonance was found to be unstable. The problem has been numerically applied to study the movement of the infinitesimal around two binary systems, Luyten-726 and Sirius.