1987
DOI: 10.1007/bf02304201
|View full text |Cite
|
Sign up to set email alerts
|

Nonlinearities in dynamic economic systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
3
0
1

Year Published

1991
1991
1993
1993

Publication Types

Select...
3
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 21 publications
0
3
0
1
Order By: Relevance
“…Finally, Nusse and Hommes (1990) show how chaos can arise in a modified Samuelson (1939) multiplier-accelerator model, due to Gabisch (1984), and in a modified cobweb cycle model, due to Cugro and Montrucchio (1984). Other discrete nonlinear models include Stutzer (1980) and those models developed in Gabisch and Lorenz (1987).…”
Section: Nonlinear Equilibrium Models Displaying Endogenous Fluctuatimentioning
confidence: 99%
“…Finally, Nusse and Hommes (1990) show how chaos can arise in a modified Samuelson (1939) multiplier-accelerator model, due to Gabisch (1984), and in a modified cobweb cycle model, due to Cugro and Montrucchio (1984). Other discrete nonlinear models include Stutzer (1980) and those models developed in Gabisch and Lorenz (1987).…”
Section: Nonlinear Equilibrium Models Displaying Endogenous Fluctuatimentioning
confidence: 99%
“…Some nonlinear dynamic equations generate chaos, while some generate periodic behavior (repeating sequences). Accessible introductions to the mathematics of chaos are to be found in Savit (1988), Gabisch (1987, Kelsey (1988), Baumol and Quandt (1985), Benhabib (1989), andStengos (1988a).' Van der Ploeg (1986) presents a model in which asset prices can evolve according to the logistic equation, which admits chaos, implying that rates of return would not be white noise. Lucas (1978) gives another model with structure in rates of return.'Long-term prediction of a chaotic system is impossible even if the form and parameterization of the system are perfectly known.…”
mentioning
confidence: 99%
“…Some nonlinear dynamic equations generate chaos, while some generate periodic behavior (repeating sequences). Accessible introductions to the mathematics of chaos are to be found in Savit (1988), Gabisch (1987, Kelsey (1988), Baumol and Quandt (1985), Benhabib (1989), andStengos (1988a).…”
mentioning
confidence: 99%
“…Η πρώτη υπόθεση εφαρμόσθηκε από τον Kaldor υποθέτοντας μία σιγμοειδή συνάρτηση επενδύσεων.Αυτή είναι η βασική μη γραμμικότητα που εισάγεται στο μοντέλο, η οποία επιτρέπει να εμφανίζονται διατηρούμενοι κύκλοι ως ενδογενής ιδιότητα της οικονομίας και η οποία αποτελεί το νέο θεωρητικό υπόβαθρο της εξήγησης των επιχειρηματικών κύκλων.Αυτό διαφέρει από την παραδοσιακή προσέγγιση που υιοθετούσε γραμμικά μοντέλα και εξηγούσε τις κυκλικές διακυμάνσεις της οικονομίας ως αποτέλεσμα εξωγενών διαταραχών (exogenous shocks) που δημιουργούν νέους κύκλους όταν εξαντλούνται οι προηγούμενοι (βλ. π.χ Gabisch 1987)…”
unclassified