A review of nonlocal theories utilized in the fatigue and fracture modeling of solid structures is addressed in this paper. Numerous papers have been studied for this purpose, and various nonlocal theories such as the nonlocal continuum damage model, stress field intensity model, peridynamics model, elastic-plastic models, energy-based model, nonlocal multiscale model, microstructural sensitive model, nonlocal lattice particle model, nonlocal high cycle fatigue model, low cycle fatigue model, nonlocal and gradient fracture criteria, nonlocal coupled damage plasticity model and nonlocal fracture criterion have been reviewed and summarized in the case of fatigue and fracture of solid structures and materials.