The effects of forward and backward noise fringes on binaural signal detectability were investigated. Masked thresholds for a 12-ms, 250-Hz, sinusoidal signal masked by Gaussian noise, centered at 250 Hz, with bandwidths from 3 to 201 Hz, were obtained in N(0)S(0) and N(0)S(π) configurations. The signal was (a) temporally centered in a 12-ms noise burst (no fringe), (b) presented at the start of a 600-ms noise burst (backward fringe), or (c) temporally centered in a 600-ms noise burst (forward-plus-backward fringe). For noise bandwidths between 3 and 75 Hz, detection in N(0)S(0) improved with the addition of a backward fringe, improving further with an additional forward fringe; there was little improvement in N(0)S(π). The binaural masking-level difference (BMLD) increased from 0 to 8 dB with a forward-plus-backward fringe as noise bandwidths increased to 100 Hz, increasing slightly to 10 dB at 201 Hz. This two-stage increase was less pronounced with a backward fringe. With no fringe, the BMLD was about 10-14 dB at all bandwidths. Performance appears to result from the interaction of across-time and across-frequency listening strategies and the possible effects of gain reduction and suppression, which combine in complex ways. Current binaural models are, as yet, unable to account fully for these effects.