1993
DOI: 10.1111/j.1755-2567.1993.tb00871.x
|View full text |Cite
|
Sign up to set email alerts
|

Nonsense logics and their algebraic properties

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
33
0
1

Year Published

2002
2002
2023
2023

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 24 publications
(34 citation statements)
references
References 10 publications
0
33
0
1
Order By: Relevance
“…Обычно, когда классы матриц задаются через условия, накла-дываемые на свойства базовых операций, требуют, чтобы эти опе-рации были, помимо прочего, C-расширяющими (см., например, [17, § 5.3], [12], [26], [55], [8]). Однако я воздерживаюсь от этого требо-вания в пользу более обобщенного подхода.…”
Section: лю девяткинunclassified
“…Обычно, когда классы матриц задаются через условия, накла-дываемые на свойства базовых операций, требуют, чтобы эти опе-рации были, помимо прочего, C-расширяющими (см., например, [17, § 5.3], [12], [26], [55], [8]). Однако я воздерживаюсь от этого требо-вания в пользу более обобщенного подхода.…”
Section: лю девяткинunclassified
“…In this work we will focus our attention on a prominent class of bisemilattices, the variety of distributive bisemilattices [46,41] and some remarkable linguistic expansions thereof: bounded distributive bisemilattices [13], distributive De Morgan bisemilattices [8], and involutive bisemilattices [19]. 1 Let us remark that, in general, bisemilattices are not assumed to be distributive, as in, e.g., [8].…”
Section: Introductionmentioning
confidence: 99%
“…For more information, see [20]; there, the algebraic model of B 3 is given in the following signature ∪, ∩, ∼, J 0 , J1 /2 , J 1 , 0, 1 . Here ∪, ∩, ∼ is De Morgan's distributive quasi-lattice (lattice without absorption laws), and the definitions of J i (x)-operators are given at the end of Section 5.3.…”
Section: Axiomatization and Algebraization Of Bmentioning
confidence: 99%
“…In [19,20] the notions of "significance logic" and "nonsense logic"  the latter being just a special case of the former  are formally defined through algebraic semantic methods and by the introduction of the "truth-value type" notion. One classification of three-valued significance and nonsense logics is presented.…”
Section: Introductionmentioning
confidence: 99%