2015
DOI: 10.1080/00405000.2015.1022088
|View full text |Cite
|
Sign up to set email alerts
|

Nonwovens modelling: a review of finite-element strategies

Abstract: This paper reviews the main strategies used to simulate the mechanical behaviour of nonwoven materials that is defined by a structure of their fibrous networks and a mechanical behaviour of constituent fibres or filaments. The main parameters influencing the network structure of nonwoven materials are discussed in the first part. The second part deals with two main strategies employed in the analysis of mechanical behaviour of nonwoven materials using finiteelement models based on continuous and discontinuous … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
3
0
2

Year Published

2017
2017
2024
2024

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 13 publications
(5 citation statements)
references
References 27 publications
0
3
0
2
Order By: Relevance
“…Due to lower computational costs, two-dimensional models in the transverse plane, for which the networks are generated by the sequential random deposition of fibers connected together at their intersections, have been used to determine the in-plane mechanical behavior of specimens with thickness of order of one tenth or less of average fiber length [6,[15][16][17]. By means of these models, it is possible to directly compute the in-plane mechanical properties for the entire solution domain, which is computationally expensive; or to solve the boundary value problem (BVP) on the representative volume element (RVE), which is usually in the form of repetitive structural units representing the subscales of the material, resulting in the effective mechanical properties [18][19][20].…”
Section: Introductionmentioning
confidence: 99%
“…Due to lower computational costs, two-dimensional models in the transverse plane, for which the networks are generated by the sequential random deposition of fibers connected together at their intersections, have been used to determine the in-plane mechanical behavior of specimens with thickness of order of one tenth or less of average fiber length [6,[15][16][17]. By means of these models, it is possible to directly compute the in-plane mechanical properties for the entire solution domain, which is computationally expensive; or to solve the boundary value problem (BVP) on the representative volume element (RVE), which is usually in the form of repetitive structural units representing the subscales of the material, resulting in the effective mechanical properties [18][19][20].…”
Section: Introductionmentioning
confidence: 99%
“…In microstructural models, geometrical and other physical properties are modeled for each constituent separately, which increases the computational cost. However, it is possible to determine the stresses and strains in each constituent accurately wherein the properties of the material and its constituents can be directly related to each other in microstructural models [18].…”
Section: Introductionmentioning
confidence: 99%
“…У роботах [110][111][112][113][114][115][116][117][118][119][120][121][122][123][124][125][126] розглянуті питання моделювання властивостей матеріалів мережевої структури у різних аспектах. Так, у [111] відзначено, що волокнисті матеріали, такі як папір, неткані матеріали, текстиль, біоматеріали на основі наноцелюлози, полімерні сітки і композити, є широко використовуваними універсальними інженерними матеріалами.…”
unclassified
“…Огляди стосовно моделювання властивостей волоконних иатеріалів описані у [116,123,124]. Зокрема, у статті [116] розглядаються основні стратегії, що використовуються для моделювання механічної поведінки нетканих матеріалів, яка визначається структурою їх волокнистих сіток і механічною поведінкою складових їх волокон або ниток. У першій частині обговорюються основні параметри, що впливають на мережеву структуру нетканих матеріалів.…”
unclassified