Obstructive apnea during sleep elevates the set point for efferent sympathetic outflow during wakefulness. Such resetting is attributed to hypoxia-induced upregulation of peripheral chemoreceptor and brain stem sympathetic function. Whether recurrent arousal from sleep also influences daytime muscle sympathetic nerve activity is unknown. We therefore tested, in a cohort of 48 primarily nonsleepy, middle-aged, male (30) and female (18) volunteers (age: 59±1 years, mean±SE), the hypothesis that the frequency of arousals from sleep (arousal index) would relate to daytime muscle sympathetic burst incidence, independently of the frequency of apnea or its severity. Polysomnography identified 24 as having either no or mild obstructive sleep apnea (apnea–hypopnea index <15 events/h) and 24 with moderate-to-severe obstructive sleep apnea (apnea–hypopnea index >15 events/h). Burst incidence correlated significantly with arousal index (
r
=0.53;
P
<0.001), minimum oxygen saturation (
r
=−0.43;
P
=0.002), apnea–hypopnea index (
r
=0.41;
P
=0.004), age (
r
=0.36;
P
=0.013), and body mass index (
r
=0.33;
P
=0.022) but not with oxygen desaturation index (
r
=0.28;
P
=0.056). Arousal index was the single strongest predictor of muscle sympathetic nerve activity burst incidence, present in all best subsets regression models. The model with the highest adjusted
R
2
(0.456) incorporated arousal index, minimum oxygen saturation, age, body mass index, and oxygen desaturation index but not apnea–hypopnea index. An apnea- and hypoxia-independent effect of sleep fragmentation on sympathetic discharge during wakefulness could contribute to intersubject variability, age-related increases in muscle sympathetic nerve activity, associations between sleep deprivation and insulin resistance or insomnia and future cardiovascular events, and residual adrenergic risk with persistence of hypertension should therapy eliminate obstructive apneas but not arousals.