2020
DOI: 10.1016/j.physletb.2020.135809
|View full text |Cite
|
Sign up to set email alerts
|

Note on de Sitter vacua from perturbative and non-perturbative dynamics in type IIB/F-theory compactifications

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

3
23
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 11 publications
(26 citation statements)
references
References 20 publications
3
23
0
Order By: Relevance
“…Well‐known approaches include those based on [21,22], that allow various corrections or non‐perturbative contributions, and recent works studying those possibilities include. [ 23–27 ] Further recent works on de Sitter in string compactifications can be found in [28–34]. In this paper, we rather focus on “classical de Sitter solutions”, [ 35 ] where we restrict ourselves to working in a classical and perturbative regime of string theory.…”
Section: Introductionmentioning
confidence: 99%
“…Well‐known approaches include those based on [21,22], that allow various corrections or non‐perturbative contributions, and recent works studying those possibilities include. [ 23–27 ] Further recent works on de Sitter in string compactifications can be found in [28–34]. In this paper, we rather focus on “classical de Sitter solutions”, [ 35 ] where we restrict ourselves to working in a classical and perturbative regime of string theory.…”
Section: Introductionmentioning
confidence: 99%
“…In [34] a model consisting of a geometric configuration of three D7$D7$ branes and three Kähler moduli based on the construction proposed in [30] in the framework of type IIB string theory, has been studied beyond the tree‐level approximation, by including logarithmic perturbative [ 31 ] as well as non‐perturbative corrections. Despite the complicated structure of these contributions, it was shown that, in the large volume regime, the scalar potential of the emerging effective field theory receives a simplified form which illustrates all the essential features of the model.…”
Section: A Short Review and Extension Of Previous Workmentioning
confidence: 99%
“…The coefficients Ai$A_i$ are functions of za$z_a$, and ak$a_k$ are small parameters which in the case of gaugino condensation take the form ak=2πNk$a_k=\frac{2\pi }{N_k}$, with Nk$N_k$ the rank of the corresponding gauge group of the D7$D7$ brane stack. In [34] the simplest scenario of only one Kähler modulus field (say ρ1$\rho _1$) was considered to have non‐vanishing non‐perturbative (NP) contributions so that the superpotential () reduces to scriptW=W0+Aeaρ1${\cal W}= {\cal W}_0 + A e^{-a\rho _1}$.…”
Section: A Short Review and Extension Of Previous Workmentioning
confidence: 99%
See 2 more Smart Citations