The famous conjecture of V. Ya.Ivrii (1978) says that in every billiard with infinitely-smooth boundary in a Euclidean space the set of periodic orbits has measure zero. In the present paper we study the complex version of Ivrii's conjecture for odd-periodic orbits in planar billiards, with reflections from complex analytic curves. We prove positive answer in the following cases: 1) triangular orbits; 2) odd-periodic orbits in the case, when the mirrors are algebraic curves avoiding two special points at infinity, the so-called isotropic points. We provide immediate applications to the real piecewise-algebraic Ivrii's conjecture and to its analogue in the invisibility theory.