“…Let A 6 = circ 6 (5, 4, 9, 0, 8, −2) be a circulant pentadiagonal matrix. we find the eigenvalues of A 6 by using (5000 + 6, 0621i,λ 5000 + 4, 3301i, λ 4 = 20, λ 5 = λ 3 = −4, 5000 − 4, 3301i, λ 6 = λ 2 = −2, 5000 − 6, 0621iand from Theorem 4.1, the entries of A3 6 circ 6 (3778, 1008, 3483, 938, 3651, 966) . Let A 9 = circ 9 (−2, 3, −4, 9, 0, 0, 6, 5, −1) be a circulant heptadiagonal matrix.…”