Through regulating the pH values, a series of iodo‐argentate/cuprate hybrids, [Me3(4‐TPT)]4[Ag6I18] (1, Me3(4‐TPT)=N,N′,N′′‐trimethyl‐2,4,6‐tris(4‐pyridyl)‐1,3,5‐triazine), [Me3(4‐TPT)][M5I8] (M=Ag/2, Cu/2 a), [Me3(3‐TPT)][M5I8] (Me3(3‐TPT)=N,N′,N′′‐trimethyl‐2,4,6‐tris(3‐pyridyl)‐1,3,5‐triazine, M=Ag/3, Cu/4), which exhibit adjustable structural variations with different dimensional structures, have been obtained under solvothermal conditions. They are directed by two types of in situ N‐alkylation TPT‐derivatives (Me3(4‐TPT) for 1/2/2 a and Me3(3‐TPT) for 3/4) and represent the isolated units (1), 1D polymeric chain (4), 2D layered structures (2/2 a, 3) based on diverse metal iodide clusters. These compounds possess reducing band gaps as compared with the bulk β‐AgI and CuI and belong to potential semiconductor materials. Iodocuprates feature highly efficient photocatalytic activity in the sunlight‐induced degradation of organic dyes. The detailed study on the possible photocatalytic mechanism, including radical trapping tests and theoretical calculations, reveals that the N‐alkylation TPT moieties contribute to the narrow semiconducting behavior and effectively inhibit the recombination of photogenerated electron‐hole pairs, which result in an excellent visible‐light‐induced photocatalytic performance.