It is well known that concrete is one of the most widely used construction materials in the world, and cement as its key constituent is partly responsible for global Carbon Dioxide (CO2) emission. Due to these reasons, high strength concrete with lower CO2 emission, and concrete with lower reliance on natural resources is increasingly popular. Geopolymer Concrete (GPC), due to its capability to minimize the consumption of natural resources, has attracted the attention of researchers. In cold regions, frost action is one of the primary GPC deterioration mechanisms requiring huge expenditures for repair and maintenance. In this regard, two types of GPC (fly-ash based GPC and bottom-ash based GPC) were exposed to the harsh freeze-thaw conditions using a standard test method. The dynamic elastic modulus of both types of GPC was determined using a Non-Destructive Test (NDT) method called Resonant Frequency Test (RFT). The results of RFT after exposing to 300 freeze-thaw cycles showed that bottom-ash based GPC has better freeze-thaw resistance than fly-ash based GPC. Moreover, in this study, the leachability of bottom-ash based GPC was also investigated to trace the heavy metals (including Si, Al, Na, Cr, Cu, Hg) using Toxicity Characteristic Leaching Procedure (TCLP) test. The results of the TCLP test showed that all of the heavy metals could be effectively immobilized into the geopolymer paste.