The aluminum diboride (AlB) crystal structure comprises intercalated metal atoms between honeycomb sheets. In addition to metal diborides, which represent the most common family of AlB-like structures, many more materials are known to crystallize in this geometry. Here we use first-principles calculations to probe the structural and electronic properties of several such systems. Specifically, we investigate the stability of various polymorphs of CaAuAs, CaAuP, CaCuP, ScAuGe, ScAuSi, CaAgSi and CaAuGe and find lattice parameters in excellent agreement with available experimental data. The analysis of densities of states and band structure diagrams show that all materials are metallic. However, the details of band dispersion vary significantly, from typical metals such as CaAuP, to almost semi-metallic behaviour in CaCuP.