To investigate the potential application of microcrystal cellulose (MCC) and cellulose whisker (CW) in the electrospun vascular tissue scaffolds, cellulose acetate (CA) and cellulose composite scaffolds containing MCC and CW were electrospun from CA solutions and deacetylation. Structure and morphology of MCC, CW and the fibrous composite scaffolds were investigated using FT-IR, SEM, TEM and AFM. The wettability of the scaffolds was evaluated by water contact angle analysis. The effect of MCC and CW on the biocompatibility of the scaffolds for vascular smooth muscle cells (VSMC) was assayed by MTT test, fluorescent imaging and SEM. The biocomposite scaffolds displayed multiscaled structure and morphology. The scaffolds containing MCC and CW simultaneously exhibited significantly higher cell viability compared to those with only MCC or CW and no filler. Cell viability and morphology within the scaffolds become better with increasing content of MCC and CW. The composite scaffolds with both micro-and nano-scale organization could mimic the native extracellular matrix more closely, and further produce synergistic enhancement on VSMC viability, adhesion and proliferation. This study provides the potential applications of renewable cellulose-based particulates in biomedical field.