Task-specific room temperature ionic liquids (RTILs) composed of symmetrical N-methylimidazolium rings linked with a short oligo (ethylene glycol) chain (cationic part) and bis-trifluoromethane sulfonimide (NTf 2 , anionic part) were successfully synthesized, and their physicochemical properties were determined by various modern analytical techniques. The catalytic activity of the synthesized RTILs was evaluated in the esterification reaction of acids with alkyl halides in solvent-free conditions at room temperature. From the screening test, all the synthesized RTILs showed a high yield with significant selectivity for respective esters in a very short reaction time. Especially, 0.1 equimolar of RTIL-1 ([tetraEG(mim) 2 ][NTf 2 ] 2 ) was found to be, the most efficient and reusable catalyst for this reaction. As a result, 100% conversion and up to a 94% yield of the respective ester product was obtained in a 30 min reaction time. This might be due to their synergetic effect of Lewis acidity, wide liquid range, and high miscibility compared to the other homogeneous and heterogeneous catalysts. Beside this, RTIL was easily separated from the reaction mixture and reused several times without any significant loss of catalytic activity and structural property.The present dicationic ionic liquids (ILs) under a solvent-free catalytic system were found to be kinetically fast, naturally benign, and achieved good yields for esterification of carboxylic acids with alkyl halides.