In this article, the characteristics of the wave energy converter are considered and a novel dynamic controller (NDC) for a permanent magnet synchronous generator (PMSG) is proposed for Wells turbine applications. The proposed NDC includes a recursive cerebellum model articulation controller (RCMAC) with a grey predictor and innovative particle swarm optimization (IPSO). IPSO is developed to adjust the learning speed and improve learning capability. Based on the supervised learning method, online adjustment law of RCMAC parameters is derived to ensure the system’s stability. The NDC scheme is designed to maintain a supply–demand balance between intermittent power generation and grid power supply. The proposed NDC exhibits an improved power regulation and dynamic performance of the wave energy system under various operation conditions. Furthermore, better results are obtained when the RCMAC is used with the grey predictive model method.