The Arabidopsis ABC transporter Comatose (CTS; AtABCD1) is required for uptake into the peroxisome of a wide range of substrates for -oxidation, but it is uncertain whether CTS itself is the transporter or if the transported substrates are free acids or CoA esters. To establish a system for its biochemical analysis, CTS was expressed in Saccharomyces cerevisiae. The plant protein was correctly targeted to yeast peroxisomes, was assembled into the membrane with its nucleotide binding domains in the cytosol, and exhibited basal ATPase activity that was sensitive to aluminum fluoride and abrogated by mutation of a conserved Walker A motif lysine residue. The yeast pxa1 pxa2⌬ mutant lacks the homologous peroxisomal ABC transporter and is unable to grow on oleic acid. Consistent with its exhibiting a function in yeast akin to that in the plant, CTS rescued the oleate growth phenotype of the pxa1 pxa2⌬ mutant, and restored -oxidation of fatty acids with a range of chain lengths and varying degrees of desaturation. When expressed in yeast peroxisomal membranes, the basal ATPase activity of CTS could be stimulated by fatty acyl-CoAs but not by fatty acids. The implications of these findings for the function and substrate specificity of CTS are discussed.Peroxisomes perform a range of different functions, including -oxidation of fatty acids (FA) 2 and synthesis and degradation of bioactive, lipid-derived molecules. Import of substrates for peroxisomal metabolism is mediated by ATP binding cassette (ABC) transporters belonging to subclass D (1, 2). ABC transporters are composed of a minimum of four functional domains: two transmembrane domains, involved in substrate binding and translocation, and two nucleotide binding domains (NBDs) that bind and hydrolyze ATP, providing energy for transport (3, 4). The domains may be fused into a single polypeptide, but are frequently expressed as half-size transporters composed of a transmembrane domain fused to an NBD, which hetero-or homodimerize to form a functional transporter. Bakers' yeast (Saccharomyces cerevisiae) contains two ABCD genes that encode half-size ABC proteins: Pxa1p (peroxisomal ABC-transporter 1), and Pxa2p (5-7). The single pxa1⌬ and pxa2⌬ deletion mutants are unable to grow on oleate (C18:1) as the sole carbon source and exhibit reduced -oxidation of this long-chain FA. It has been proposed that Pxa1p and Pxa2p operate as a heterodimer to form a functional transporter (6,8,9), which has been shown by indirect evidence to be required for the peroxisomal transport of the C18:1-CoA, a long-chain acyl-CoA ester, but not for import of C8:0-CoA (10). In contrast, medium-chain FAs enter yeast peroxisomes as free acids independently of Pxa1p/Pxa2p, and are activated by peroxisomal acyl-CoA synthetase, Faa2p, prior to -oxidation (6).The human ABCD transporter subfamily comprises four half-size members: adrenoleukodystrophy protein (ALDP), ALD-related protein, the 70-kDa peroxisomal membrane protein (PMP70), and PMP70-related protein (PMP70R/PMP69) (1, 2). Although...