The last decade has seen a significant leap in our understanding of the wide range of genetic lesions underpinning acute lymphoblastic leukaemia (ALL). Next generation sequencing has led to the identification of driver mutations with significant implications on prognosis and has defined entities such as BCR-ABL-like ALL, where targeted therapies such as tyrosine kinase inhibitors (TKIs) and JAK inhibitors may play a role in its treatment. In Philadelphia positive ALL, the introduction of TKIs into frontline treatment regimens has already transformed patient outcomes. In B-ALL, agents targeting surface receptors CD19, CD20 and CD22, including monoclonal antibodies, bispecific T cell engagers, antibody drug conjugates and chimeric antigen receptor (CAR) T cells, have shown significant activity but come with unique toxicities and have implications for how treatment is sequenced. Advances in T-ALL have lagged behind those seen in B-ALL. However, agents such as nelarabine, bortezomib and CAR T cell therapy targeting T cell antigens have been examined with promising results seen. As our understanding of disease biology in ALL grows, as does our ability to target pathways such as apoptosis, through BH3 mimetics, chemokines and epigenetic regulators. This review aims to highlight a range of available and emerging targeted therapeutics in ALL, to explore their mechanisms of action and to discuss the current evidence for their use.