Avibactam is a β-lactamase inhibitor that is in clinical development, combined with β-lactam partners, for the treatment of bacterial infections comprising Gram-negative organisms. Avibactam is a structural class of inhibitor that does not contain a β-lactam core but maintains the capacity to covalently acylate its β-lactamase targets. Using the TEM-1 enzyme, we characterized avibactam inhibition by measuring the on-rate for acylation and the offrate for deacylation. The deacylation off-rate was 0.045 min â1 , which allowed investigation of the deacylation route from TEM-1. Using NMR and MS, we showed that deacylation proceeds through regeneration of intact avibactam and not hydrolysis. Other than TEM-1, four additional clinically relevant β-lactamases were shown to release intact avibactam after being acylated. We showed that avibactam is a covalent, slowly reversible inhibitor, which is a unique mechanism of inhibition among β-lactamase inhibitors.antibacterial | drug discovery | enzymology T here is an urgent need for new antibacterial agents that are active against drug-resistant bacteria. In particular, some Gram-negative pathogens have accumulated enough resistance mechanisms to render them virtually untreatable by modern antibacterial chemotherapy (1, 2). A mainstay for treatment of Gram-negative infections is the β-lactam classes of drugs. The most common form of resistance to β-lactam antibiotics is the expression of various β-lactamase enzymes capable of hydrolyzing the β-lactam ring of β-lactam drugs, rendering them ineffective. As new β-lactams have been introduced into clinical use, a changing landscape of β-lactamases has been selected and disseminated. Presently, over 1,000 β-lactamases have been documented comprising several structural classes and a wide range of substrate promiscuities and catalytic efficiencies (3, 4).In efforts to restore the efficacy of β-lactam antibiotics, β-lactamases have also been targeted with a variety of inhibitors (5, 6). The three inhibitors approved for clinical use are clavulanic acid, tazobactam, and sulbactam, all of which contain a β-lactam core. A challenge for the development of broad-spectrum β-lactamase inhibitors is the mechanistic diversity in β-lactamase enzymes, with the largest distinction being between the enzyme classes that use a serine residue as the nucleophilic species and the metallo-β-lactamases, which directly activate water for hydrolysis (7). A shared mechanistic feature of the marketed β-lactam-based inhibitors is their reaction with the serine enzymes to form a covalent acylenzyme intermediate. On ring opening, the acyl-enzyme intermediate can undergo additional rearrangements or be released through hydrolysis to regenerate the active β-lactamase enzyme (8). Originally designed to combat class A serine β-lactamase enzymes such as TEM-1, the clinical use of β-lactam-based inhibitors has been diminished by the emergence of enzymes against which they are ineffective. Despite intense investigation by pharmaceutical companies, no new β-lactamas...