2009
DOI: 10.1016/j.dsp.2007.11.005
|View full text |Cite
|
Sign up to set email alerts
|

Novel modified fuzzy c-means algorithm with applications

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
45
0
3

Year Published

2009
2009
2017
2017

Publication Types

Select...
5
3
1

Relationship

0
9

Authors

Journals

citations
Cited by 89 publications
(48 citation statements)
references
References 11 publications
0
45
0
3
Order By: Relevance
“…Bunların yerine görüntüde bir miktar kayıp ile yüksek oranda sıkıştırma daha çok tercih edilmektedir. Bu tekniklerden en popüler olanları LBG ile vektör nicemleme (Linde et al, 1980;Gray, 1984;Lin and Tai, 1998;Patane and Russo, 2001;Tsai et al, 2009;Pan et al, 2011, Ku et al, 2014, Khan et al, 2015, Bulanık C-Ortalamalar (BCO) (Dunn, 1973;Bezdek et al, 1984;Ya-zhong et al, 2011;Kang et al, 2009), K-Ortalamalar (KO) (Lloyd, 1982;Bagirov et al, 2011;Bai et al, 2013;Tzortzis and Likas, 2014) algoritmalarıdır. Klasik LBG algoritması iyi bir başlangıç kod vektör listesi hesaplanıp algoritma başlangıcında kullanılarak geliştirilmiştir (Patane, 2001).…”
Section: Introductionunclassified
“…Bunların yerine görüntüde bir miktar kayıp ile yüksek oranda sıkıştırma daha çok tercih edilmektedir. Bu tekniklerden en popüler olanları LBG ile vektör nicemleme (Linde et al, 1980;Gray, 1984;Lin and Tai, 1998;Patane and Russo, 2001;Tsai et al, 2009;Pan et al, 2011, Ku et al, 2014, Khan et al, 2015, Bulanık C-Ortalamalar (BCO) (Dunn, 1973;Bezdek et al, 1984;Ya-zhong et al, 2011;Kang et al, 2009), K-Ortalamalar (KO) (Lloyd, 1982;Bagirov et al, 2011;Bai et al, 2013;Tzortzis and Likas, 2014) algoritmalarıdır. Klasik LBG algoritması iyi bir başlangıç kod vektör listesi hesaplanıp algoritma başlangıcında kullanılarak geliştirilmiştir (Patane, 2001).…”
Section: Introductionunclassified
“…To improve the performance of FCM, Caldairou et al (2011) used a non-local FCM method to segment brain MR images [21]. New forms of membership functions and objective functions including neighbor information were also proposed to increase the performance of FCM [22][23][24][25][26]. In these studies, membership functions were modified to have a weight function to include non-local pixel information from adjacent pixels, and the objective function was modified to include a non-local regularization term [21].…”
Section: Y Feng Et Al / a Modified Fcm For Mr Images Segmentationmentioning
confidence: 99%
“…Kang et al [30] improved FCM with adaptive weighted average filter. Ahmed et al [12] modified the objective function of FCM to allow the labeling of a pixel to be influenced by the labels in its immediate neighborhood.…”
Section: Related Workmentioning
confidence: 99%
“…The datasets also have the skull as part of the imaged volume, so it is important to remove it in a separate pre-process. This is achieved using the Brain suite [30] automated software package for skull removing. Then the proposed approach is applied on the volumes of the datasets to segment each into the five classes (WM, GM, CSF, BG, and tumor).…”
Section: Real Normal Mri Segmentationmentioning
confidence: 99%