An in situ embed ionic liquid method is designed and employed in thermoplastic polyurethanes (PUs). Unlike the traditional physically incorporated antistatic polymers where conductive fillers do not firmly combined with the matrix. This permanently antistatic PUs are successfully synthesized by using a novel polyester diol bonded with ionic liquids (ILs), which are obtained by an esterification. The ILs and novel polyester polyol are successfully synthesized and subsequently characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectrum ( 1 H NMR), respectively. The effects of ILs content, temperature, and relative humidity (RH) on the surface resistivity of PUs are studied by surface resistivity tests. It is found that the surface resistivity of PUs dramatically decreases with the increment of ILs and are insensitive to surrounding environment. The surface resistivity of PUs with 5.96 wt% ILs reaches 10 10 X cm 22 order of magnitude. The crystalline properties, thermal decomposition behaviors and mechanical properties of synthesized PUs are investigated by X-ray diffraction (XRD), thermal gravimetric analysis (TGA) and tensile test respectively. The crystallinity of PUs with ILs is lower than that of pure PUs. Moreover, we also investigate the effect of ILs on the surface morphology of the PUs. POLYM.ENG. SCI., 56:629-635,