The chemokine receptor CXCR4 is critical for many biological functions, such as B-cell lymphopoiesis, regulation of neuronal cell migration, and vascular development (1-3). In addition, CXCR4 together with another chemokine receptor CCR5 are two principal co-receptors for the cellular entry of the human immunodeficiency virus type 1 (HIV-1) 1 (4 -7). The stromal cell-derived factor-1 (SDF-1␣) is the only known natural ligand of CXCR4 and plays important roles in migration, proliferation, and differentiation of leukocytes (8, 9). The viral macrophage inflammatory protein II (vMIP-II) encoded by human herpesvirus 8 (10) is an antagonistic chemokine ligand of CXCR4 (11, 12). vMIP-II also interacts with other chemokine receptors such as CCR5 and CCR3 and inhibits HIV-1 entry mediated by these co-receptors.CXCR4 and other chemokine receptors belong to the superfamily of seven transmembrane G-protein-coupled receptors (GPCRs) (13). These membrane proteins transmit signals from extracellular ligands to intracellular biological pathways via heterotrimeric G-proteins and have been a major class of therapeutic targets for a wide variety of human diseases (14). As such, characterizing the mechanism of biological recognition between these receptors and their ligands is essential for understanding the physiological or pathological processes that they mediate and devising novel strategies for clinical intervention. For CXCR4, studies have been carried out by a number of laboratories using chimeric chemokine receptors and site-specific mutants to study multiple domains of CXCR4 that are important for interacting with chemokine ligands and HIV-1 (15-23). However, because there is no high resolution crystal structure available for CXCR4 (or any other chemokine receptor) alone or complexed with ligands, the structural and biochemical basis of ligand binding and signaling through these important membrane receptors remains poorly understood.To further define the structure-function relationship of the chemokine receptor-ligand interaction, theoretical computer modeling and site-directed mutagenesis were combined to predict plausible structural models for chemokine receptors and their complexes with ligands, such as interleukin-8 receptor  (24) and CCR5 (25,26). Structural models of CXCR4 and its complex with ligands were also proposed (27, 28). Complementary to modeling and mutational analyses of the receptors,