Farnesyltransferase inhibitor (FTI) induces apoptosis of transformed cells. This involves changes in mitochondria, including decrease of mitochondrial membrane potential and the release of cytochrome c. The released cytochrome c then induces events leading to the activation of caspase-3. In this study, we report that purine derivative cyclin-dependent kinase (Cdk) inhibitors, roscovitine and olomoucine, dramatically enhance this FTI-induced apoptosis of human cancer cell lines. We noticed the synergy between Cdk inhibitors and FTI through our screen to identify compounds that enhance FTI-induced apoptosis of promyelocytic leukemic cell line HL-60. The Cdk inhibitors by themselves do not induce apoptosis at the concentrations used. Roscovitine synergizes with FTI to release cytochrome c from mitochondria. In addition, we detected synergistic e ects of FTI and roscovitine to inhibit hyperphosphorylation of retinoblastoma protein. Enhancement of FTI-induced apoptosis by roscovitine is not unique to HL-60 cells, since similar synergy was observed with a leukemic cell line CEM and a prostate cancer cell line LNCaP. In LNCaP cells, in addition to roscovitine and olomoucine, phophatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, was e ective in enhancing FTI-induced apoptosis. However, the e ects of roscovitine appear to be distinct from those of LY294002, since roscovitine did not a ect Akt activity while LY294002 signi®cantly decreased the activity of Akt. Our ®nding of the synergy between FTI and Cdk inhibitor is signi®cant for understanding the mechanism of action of FTI as well as for clinical use of FTI. Oncogene (2000) 19, 3059 ± 3068.