Oxygen-enhanced combustion (OEC) is a useful method for improving the efficiency of thermal plants and for decreasing greenhouse gas (GHG) emissions. Basic and modified burner designs utilizing OEC in the aluminum melting process in a rotary tilting furnace were studied. A combined approach comprising experimental measurement and simulation modeling was adopted aimed at assessing GHG emissions production. Reduction of up to 60% fuel consumption of the total natural gas used in the laboratory-scale furnace was achieved. The optimal oxygen concentration in the oxidizer regarding the amount of total GHG emissions produced per charge expressed as CO2 equivalent was 35% vol. Its further increase led only to marginal fuel savings, while the nitrogen oxide emissions increased rapidly. Using the modified burner along with OEC led to around 10% lower CO2 emissions and around 15% lower total GHG emissions, compared to using a standard air/fuel burner. CFD simulations revealed the reasons for these observations: improved mixing patterns and more uniform temperature field. Modified burner application, moreover, enables furnace productivity to be increased by shortening the charge melting time by up to 16%. The presented findings demonstrate the feasibility of the proposed burner modification and highlight its better energy and environmental performance indicators, while indicating the optimal oxygen enrichment level in terms of GHG emissions for the OEC technology applied to aluminum melting.