We compared the mechanistic and kinetic properties of murine leukemia virus (MuLV) and human immunodeficiency virus type 1 (HIV-1) reverse transcriptases (RTs) during RNA-dependent DNA polymerization and mutation synthesis using pre-steady-state kinetic analysis. First, MuLV RT showed 6.5-121.6-fold lower binding affinity (K d ) to deoxynucleotide triphosphate (dNTP) substrates than HIV-1 RT, although the two RTs have similar incorporation rates (k pol ). Second, compared with HIV-1 RT, MuLV RT showed dramatic reduction during multiple dNTP incorporations at low dNTP concentrations. Presumably, due to its low dNTP binding affinity, the dNTP binding step becomes rate-limiting in the multiple rounds of the dNTP incorporation by MuLV RT, especially at low dNTP concentrations. Third, similar fold differences between MuLV and HIV-1 RTs in the K d and k pol values to correct and incorrect dNTPs were observed. This indicates that these two RT proteins have similar misinsertion fidelities. Fourth, these two RT proteins have different mechanistic capabilities regarding mismatch extension. MuLV RT has a 3.1-fold lower mismatch extension fidelity, compared with HIV-1 RT. Finally, MuLV RT has a 3.8-fold lower binding affinity to mismatched template/primer (T/P) substrate compared with HIV-1 RT. Our data suggest that the active site of MuLV RT has an intrinsically low dNTP binding affinity, compared with HIV-1 RT. In addition, instead of the misinsertion step, the mismatch extension step, which varies between MuLV and HIV-1 RTs, contributes to their fidelity differences. The implications of these kinetic differences between MuLV and HIV-1 RTs on viral cell type specificity and mutagenesis are discussed.Retroviruses encode a versatile DNA polymerase called reverse transcriptase (RT).1 The function of RT is to synthesize linear double-stranded proviral DNAs from single-stranded positive sense viral RNA genomes during viral replication. In order to catalyze this process, RTs perform several distinct enzymatic reactions including RNA-dependent DNA polymerization, DNA-dependent DNA polymerization, strand transfer, and RNase H cleavage (1). The DNA polymerase activity of RTs has been targeted, using various types of RT inhibitors such as nucleoside substrate-like compounds (i.e. azidothymidine (AZT) and didanosine (ddI)) (2), as a means to reduce viral replication in infected individuals. Lentiviruses such as human immunodeficiency virus type 1 (HIV-1) uniquely infect terminally differentiated/nondividing cells (i.e. macrophages) as well as dividing cells (i.e. activated CD4ϩ T cells), whereas oncoretroviruses such as murine leukemia virus (MuLV) productively replicate mainly in dividing cells (3,4). Numerous studies have reported that actively dividing cells have higher cellular deoxynucleotide triphosphate (dNTP) concentrations than nondividing cells (5). Recently, it was reported that the cellular dNTP concentration of human macrophages (ϳ40 nM) is ϳ100 times lower than that of dividing CD4 ϩ T cells (ϳ5 M) (6). Therefore, RTs ...