Human immunodeficiency virus-1 (HIV-1) Vpr expression halts the proliferation of human cells at or near the G2 cell-cycle checkpoint. The transition from G2 to mitosis is normally controlled by changes in the state of phosphorylation and subcellular compartmentalization of key cell-cycle regulatory proteins. In studies of the intracellular trafficking of these regulators, we unexpectedly found that wild-type Vpr, but not Vpr mutants impaired for G2 arrest, induced transient, localized herniations in the nuclear envelope (NE). These herniations were associated with defects in the nuclear lamina. Intermittently, these herniations ruptured, resulting in the mixing of nuclear and cytoplasmic components. These Vpr-induced NE changes probably contribute to the observed cell-cycle arrest.
The roles of the HIV1 protein Vpr in virus replication and pathogenesis remain unclear. Expression of Vpr in dividing cells causes cell cycle arrest in G 2 . Vpr also facilitates low titer infection of terminally differentiated macrophages, enhances transcription, promotes apoptosis, and targets cellular uracil N-glycosylase for degradation. Using co-immunoprecipitation and tandem mass spectroscopy, we found that HIV1 Vpr engages a DDB1-and cullin4A-containing ubiquitin-ligase complex through VprBP/DCAF1. HIV2 Vpr has two Vpr-like proteins, Vpr and Vpx, which cause G 2 arrest and facilitate macrophage infection, respectively. HIV2 Vpr, but not Vpx, engages the same set of proteins. We further demonstrate that the interaction between Vpr and the ubiquitin-ligase components as well as further assembly of the ubiquitin-ligase are necessary for Vpr-mediated G 2 arrest. Our data support a model in which Vpr engages the ubiquitin ligase to deplete a cellular factor that is required for cell cycle progression into mitosis. Vpr, thus, functions like the HIV1 proteins Vif and Vpu to usurp cellular ubiquitin ligases for viral functions.
Human immunodeficiency virus (HIV)Vpr contributes to nuclear import of the viral pre-integration complex and induces G 2 cell cycle arrest. We describe the production of synthetic Vpr that permitted the first studies on the structure and folding of the full-length protein. Vpr is unstructured at neutral pH, whereas under acidic conditions or upon addition of trifluorethanol it adopts ␣-helical structures. Vpr forms dimers in aqueous trifluorethanol, whereas oligomers exist in pure water.1 H NMR spectroscopy allows the signal assignment of N-and C-terminal amino acid residues; however, the central section of the molecule is obscured by self-association. These findings suggest that the in vivo folding of Vpr may require structure-stabilizing interacting factors such as previously described interacting cellular and viral proteins or nucleic acids. In biological studies we found that Vpr is efficiently taken up from the extracellular medium by cells in a process that occurs independent of other HIV-1 proteins and appears to be independent of cellular receptors. Following cellular uptake, Vpr is efficiently imported into the nucleus of transduced cells. Extracellular addition of Vpr induces G 2 cell cycle arrest in dividing cells. Together, these findings raise the possibility that circulating forms of Vpr observed in HIV-infected patients may exert biological effects on a broad range of host target cells.
Human immunodeficiency virus type 1 (HIV-1) is capable of infecting nondividing cells such as macrophages because the viral preintegration complex is able to actively traverse the limiting nuclear pore due to the redundant and possibly overlapping nuclear import signals present in Vpr, matrix, and integrase. We have previously recognized the presence of at least two distinct and novel nuclear import signals residing within Vpr that, unlike matrix and integrase, bypass the classical importin ␣/-dependent signals and do not require energy or a RanGTP gradient. We now report that the carboxy-terminal region of Vpr (amino acids 73 to 96) contains a bipartite nuclear localization signal (NLS) composed of multiple arginine residues. Surprisingly, when the leucine-rich Vpr(1-71) fragment, previously shown to harbor an NLS, or full-length Vpr is fused to the C terminus of a green fluorescent protein-pyruvate kinase (GFP-PK) chimera, the resultant protein is almost exclusively detected in the cytoplasm. However, the addition of leptomycin B (LMB), a potent inhibitor of CRM1-dependent nuclear export, produces a shift from a cytoplasmic localization to a nuclear pattern, suggesting that these Vpr fusion proteins shuttle into and out of the nucleus. Studies of nuclear import with GFP-PK-Vpr fusion proteins in the presence of LMB reveals that both of the leucine-rich ␣-helices are required for effective nuclear uptake and thus define a unique NLS. Using a modified heterokaryon analysis, we have localized the Vpr nuclear export signal to the second leucine-rich helix, overlapping a portion of the amino-terminal nuclear import signal. These studies thus define HIV-1 Vpr as a nucleocytoplasmic shuttling protein.
The human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) causes cell cycle arrest in G 2 . Vpr-expressing cells display the hallmarks of certain forms of DNA damage, specifically activation of the ataxia telangiectasia mutated and Rad3-related kinase, ATR. However, evidence that Vpr function is relevant in vivo or in the context of viral infection is still lacking. In the present study, we demonstrate that HIV-1 infection of primary, human CD4؉ lymphocytes causes G 2 arrest in a Vpr-dependent manner and that this response requires ATR, as shown by RNA interference. The event leading to ATR activation in CD4؉ lymphocytes is the accumulation of replication protein A in nuclear foci, an indication that Vpr likely induces stalling of replication forks. Primary macrophages are refractory to ATR activation by Vpr, a finding that is consistent with the lack of detectable ATR, Rad17, and Chk1 protein expression in these nondividing cells. These observations begin to explain the remarkable resilience of macrophages to HIV-1-induced cytopathicity. To study the in vivo consequences of Vpr function, we isolated CD4؉ lymphocytes from HIV-1-infected individuals and interrogated the cell cycle status of anti-p24Gag -immunoreactive cells. We report that infected cells in vivo display an aberrant cell cycle profile whereby a majority of cells have a 4N DNA content, consistent with the onset of G 2 arrest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.