2018
DOI: 10.1038/s41598-018-29246-4
|View full text |Cite
|
Sign up to set email alerts
|

Nuclear Norm Clustering: a promising alternative method for clustering tasks

Abstract: Clustering techniques are widely used in many applications. The goal of clustering is to identify patterns or groups of similar objects within a dataset of interest. However, many cluster methods are neither robust nor sensitive to noises and outliers in real data. In this paper, we present Nuclear Norm Clustering (NNC, available at https://sourceforge.net/projects/nnc/), an algorithm that can be used in various fields as a promising alternative to the k-means clustering method. The NNC algorithm requires user… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(2 citation statements)
references
References 28 publications
0
1
0
1
Order By: Relevance
“…The choice of a good basis is essential for the reliability of the metrics, so we chose the GOLD/Brown base from ASTRAL/SCOPe [30]. For the validation of clusters, we used F1-Score, an external metric that provides the balance between the accuracy and sensitivity measures [31, 32]. The GOLD database - a collection “gold standard” of enzymes families experimentally validated [33] totalizing 866 sequences - to evaluation of clusters generated for RAFTS 3 G compared to three highlighted methods .…”
Section: Resultsmentioning
confidence: 99%
“…The choice of a good basis is essential for the reliability of the metrics, so we chose the GOLD/Brown base from ASTRAL/SCOPe [30]. For the validation of clusters, we used F1-Score, an external metric that provides the balance between the accuracy and sensitivity measures [31, 32]. The GOLD database - a collection “gold standard” of enzymes families experimentally validated [33] totalizing 866 sequences - to evaluation of clusters generated for RAFTS 3 G compared to three highlighted methods .…”
Section: Resultsmentioning
confidence: 99%
“…Tahapan dalam menggunakan metode AGNES adalah dengan mengambil setiap amatan sebagai klaster, kemudian klaster tersebut digabungkan secara bertahap dengan kriteria tertentu. Sedangkan DIANA menempatkan semua amatan dalam sebuah klaster dan membaginya menjadi klaster yang lebih kecil hingga diperoleh jumlah klaster yang diinginkan (Wang et al, 2018). Pada saat menentukan jarak pada klaster, terdapat beberapa metode yang digunakan, yaitu dengan single linkage, complete linkage, average linkage, dan ward.…”
Section: Gambar 1 Alur Analisis Data Hierarchical Clusteringunclassified