Nuclear resonance
vibrational spectroscopy (NRVS; also known as
nuclear inelastic scattering, NIS) is a synchrotron-based method that
reveals the full spectrum of vibrational dynamics for Mössbauer
nuclei. Another major advantage, in addition to its completeness (no
arbitrary optical selection rules), is the unique selectivity of NRVS.
The basics of this recently developed technique are first introduced
with descriptions of the experimental requirements and data analysis
including the details of mode assignments. We discuss the use of NRVS
to probe 57Fe at the center of heme and heme protein derivatives
yielding the vibrational density of states for the iron. The application
to derivatives with diatomic ligands (O2, NO, CO, CN–) shows the strong capabilities of identifying mode
character. The availability of the complete vibrational spectrum of
iron allows the identification of modes not available by other techniques.
This permits the correlation of frequency with other physical properties.
A significant example is the correlation we find between the Fe–Im
stretch in six-coordinate Fe(XO) hemes and the trans Fe–N(Im)
bond distance, not possible previously. NRVS also provides uniquely
quantitative insight into the dynamics of the iron. For example, it
provides a model-independent means of characterizing the strength
of iron coordination. Prediction of the temperature-dependent mean-squared
displacement from NRVS measurements yields a vibrational “baseline”
for Fe dynamics that can be compared with results from techniques
that probe longer time scales to yield quantitative insights into
additional dynamical processes.