In this paper, dependence of active nucleation site density on boiling surfaces are developed. For pool boiling heat transfer, a mathematical model is derived based on statistical treatment using the probability density function of the cavity mouth radius and existing correlation for active nucleation site density, the volume of single bubble at departure, the bubble departure diameter and the bubble departure frequency. The proposed model is expressed as a function of wall superheat, the contact angle, maximum and minimum active cavities, and physical properties of fluid. It is shown that the wall heat flux can be determined by the consideration of the variation of the cavity mouth radius. A good agreement between the proposed model predictions and experimental data is found for different contact angles. It also turns out that the present model explains well the mechanism on how wettability affects the pool boiling.