The organic Rankine cycle (ORC) offers great potential for waste heat recovery and use of low-temperature sources for power generation. However, the ORC thermal efficiency is limited by the relatively low-temperature level, and it is, therefore, of major importance to design ORC components with high efficiencies and minimized losses. The use of organic fluids creates new challenges for turbine design, due to dense gas behavior and the low speed of sound. The design and performance predictions for steam and gas turbines have been initially based on measurements and numerical simulations of flow through two-dimensional cascades of blades. In case of ORC turbines and related fluids, such an approach requires the use of a specially designed closed cascade wind tunnel. In this contribution the design and process engineering of a continuous running wind tunnel for organic vapors is presented. The wind tunnel can be operated with heavy weight organic working fluids within a broad range of pressure and temperature levels. For this reason, the use of classical design rules for atmospheric wind tunnels is limited. The thermodynamic cycle process in the closed wind tunnel is modeled, and simulated by means of a professional power plant analysis tool, including a database for the ORC fluid properties under consideration. The wind tunnel is designed as a pressure vessel system and this leads to significant challenges particular for the employed wide angle diffuser, settling chamber, and nozzle. Detailed computational fluid dynamics (CFD) was performed in order to optimize the important wind tunnel sections.
The Organic Rankine Cycle (ORC) offers a great potential for recovering waste heat and using low-temperature sources for power generation. However, the ORC thermal efficiency is limited by the relatively low temperature level, and, therefore, designing ORC components with high efficiencies and minimized losses is of major importance. Such an approach requires the use of a specially designed closed cascade wind tunnel. This contribution presents the design of the contraction zone shape. The ideal shape can be defined by a sixth order polynomial yielding a smooth curve for the nozzle profile. Due to pressure vessel costs, it is not possible to realize the whole contraction zone as one piece for this wind tunnel. Instead, a piece-wise conical design approach is chosen. Classical nozzle design guidelines do not offer an analytical solution to this flow problem. Therefore, computational fluid dynamics (CFD) in combination with Stratford’s separation criterion is used for an optimization study of a piece-wise conical contraction zone. Different combination of numbers of components, length, and inflection points are investigated. The optimization minimizes the flow deviation of the chosen profile to the optimal shape in two steps: a geometrical approach to the optimal shape and an optimization of the flow field within the contraction zone. The geometrical optimization yields a profile with minor deviation to the ideal shape. For the flow field optimization, a CFD analysis is used to minimize flow separations at the break points between the single conical pieces, especially those at the far end of the contraction zone. All shapes are investigated by Stratford’s separation criterion, which is adopted to conical pieces. The presented analysis indicates that the flow field optimization yields a much better approach for the fluid dynamics of the wind tunnel than the geometrical approach.
Organic vapor flows are met in a wide range of technical applications (e.g., energy conversion, chemical processes, and refrigeration). Typically, organic fluids contain complex molecules, and their thermodynamic behavior deviates significantly from the ideal or perfect gas laws. The applicability of scaling laws to organic vapor flows is very limited, and there is a need for detailed experimental investigations under relevant process conditions. Furthermore, such investigations can provide a validation basis for the simulations performed with Computational Fluid Dynamics (CFD) tools. On the other hand, there exists a serious lack in experimental organic vapor flow test facilities. In this contribution, a novel Closed Loop Organic vapor Wind Tunnel (CLOWT) is presented. The concept of CLOWT is based on a closed-loop continuously running wind tunnel cycle. Its main components are a blower, a diffuser, a settling chamber, a contraction zone, a test section module, and a return, including a throttle valve and a mass flow meter. The test facility CLOWT applies the modular design approach which enables analysis of various flow configurations and components like blowers, small axial test turbines, nozzle flows or transonic flows past test objects. Thanks to an auxiliary heating system, organic vapor flows can be investigated at elevated pressure and temperature levels. The operation of CLOWT is based on closed gas turbine cycle control methods (e.g., inventory control). In addition to the general test facility concept, the paper gives a detailed discussion of the CLOWT special design features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.