The organic Rankine cycle (ORC) offers great potential for waste heat recovery and use of low-temperature sources for power generation. However, the ORC thermal efficiency is limited by the relatively low-temperature level, and it is, therefore, of major importance to design ORC components with high efficiencies and minimized losses. The use of organic fluids creates new challenges for turbine design, due to dense gas behavior and the low speed of sound. The design and performance predictions for steam and gas turbines have been initially based on measurements and numerical simulations of flow through two-dimensional cascades of blades. In case of ORC turbines and related fluids, such an approach requires the use of a specially designed closed cascade wind tunnel. In this contribution the design and process engineering of a continuous running wind tunnel for organic vapors is presented. The wind tunnel can be operated with heavy weight organic working fluids within a broad range of pressure and temperature levels. For this reason, the use of classical design rules for atmospheric wind tunnels is limited. The thermodynamic cycle process in the closed wind tunnel is modeled, and simulated by means of a professional power plant analysis tool, including a database for the ORC fluid properties under consideration. The wind tunnel is designed as a pressure vessel system and this leads to significant challenges particular for the employed wide angle diffuser, settling chamber, and nozzle. Detailed computational fluid dynamics (CFD) was performed in order to optimize the important wind tunnel sections.
The Organic Rankine Cycle (ORC) offers a great potential for recovering waste heat and using low-temperature sources for power generation. However, the ORC thermal efficiency is limited by the relatively low temperature level, and, therefore, designing ORC components with high efficiencies and minimized losses is of major importance. Such an approach requires the use of a specially designed closed cascade wind tunnel. This contribution presents the design of the contraction zone shape. The ideal shape can be defined by a sixth order polynomial yielding a smooth curve for the nozzle profile. Due to pressure vessel costs, it is not possible to realize the whole contraction zone as one piece for this wind tunnel. Instead, a piece-wise conical design approach is chosen. Classical nozzle design guidelines do not offer an analytical solution to this flow problem. Therefore, computational fluid dynamics (CFD) in combination with Stratford’s separation criterion is used for an optimization study of a piece-wise conical contraction zone. Different combination of numbers of components, length, and inflection points are investigated. The optimization minimizes the flow deviation of the chosen profile to the optimal shape in two steps: a geometrical approach to the optimal shape and an optimization of the flow field within the contraction zone. The geometrical optimization yields a profile with minor deviation to the ideal shape. For the flow field optimization, a CFD analysis is used to minimize flow separations at the break points between the single conical pieces, especially those at the far end of the contraction zone. All shapes are investigated by Stratford’s separation criterion, which is adopted to conical pieces. The presented analysis indicates that the flow field optimization yields a much better approach for the fluid dynamics of the wind tunnel than the geometrical approach.
An optimization study based on computational fluid dynamics (CFD) in combination with Stratford's analytical separation criterion was developed for the design of piecewise conical contraction zones and nozzles. The risk of flow separation was formally covered by a newly introduced dimensionless separation number. The use of this separation number can be interpreted as an adaption of Stratford's separation criterion to piecewise conical nozzles. In the nozzle design optimization process, the risk of flow separation was reduced by minimizing the separation number. It was found that the flow-optimized piecewise conical nozzle did not correspond to a direct geometric approximation of an ideal polynomial profile. In fact, it was beneficial to reduce the flow deflection in the outlet region for a piecewise conical nozzle to increase the nozzle performance. In order to validate the novel design method, extensive tests for different nozzle designs were conducted by means of wind tunnel tests. The measured velocity profiles and wall pressure distributions agreed well with the CFD predictions.
The Organic Rankine Cycle (ORC) offers great potential for waste heat recovery and use of low-temperature sources for power generation. However, the ORC thermal efficiency is limited by the relatively low temperature level, and it is, therefore, of major importance to design ORC components with high efficiencies and minimized losses. The use of organic fluids creates new challenges for turbine design, due to dense gas behavior and the low speed of sound. The design and performance predictions for steam and gas turbines have been initially based on measurements and numerical simulations of flow through two-dimensional cascades of blades. In case of ORC turbines and related fluids, such an approach requires the use of a specially designed closed cascade wind tunnel. In this contribution the design and process engineering of a continuous running wind tunnel for organic vapors is presented. The wind tunnel can be operated with heavy weight organic working fluids within a broad range of pressure and temperature levels. For this reason, the use of classical design rules for atmospheric wind tunnels is limited. The thermodynamic cycle process in the closed wind tunnel is modeled and simulated by means of a professional power plant analysis tool, including a database for the ORC fluid properties under consideration. The wind tunnel is designed as a pressure vessel system and this leads to significant challenges particular for the employed wide angle diffuser, settling chamber, and nozzle. Detailed computational fluid dynamics analyses (CFD) were performed in order to optimize the important wind tunnel sections.
This contribution presents the development and design of a two-stage contraction zone and modular test section for a closed loop Organic Rankine Cycle (ORC) wind tunnel. The first contraction consists of four truncated cones, whose length and angle of inclination are derived from a two-stage optimization procedure, with the objective to minimize flow deviation and to avoid boundary-layer separation. The geometrical optimization yields a profile with minor deviation to the ideal polynomial shape, whereas the flow optimized shape minimizes flow separation at the break-points between the single conical pieces. The second contraction has to perform two major tasks, namely the acceleration of the flow up to a Mach number of Ma = 0.8 for organic fluids and the transformation of the circular inlet to a rectangular outlet cross-sectional shape, required by the working section. The circular-to-rectangular transition is accomplished by variation of the generalized ellipse, also known as Lamé curve. Smooth polynomials are then used to define the reduction of cross-sectional area. A comprehensive number of contraction geometries with fixed contraction ratio, variable length, and different points of inflection are analyzed with regards to minimum flow deviation, the avoidance of flow separation, as well as a uniform velocity field at the contraction outlet. A semi-analytical approach based on a potential flow solution in combination with the Stratford criterion is the basis for evaluating boundary-layer separation. The design of a two-part modular diffuser, based on the concept of a dumped diffuser, as commonly encountered in gas turbine design, is presented. The numerical results are compared with analytical findings and special characteristics of the different designs are explained. Finally, the overall design concept of the test section is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.