In this work, we show and discuss the surface structure picture of copper phthalocyanine (CuPc) thin films deposited from trifluoroacetic acid (TFA) solvent onto silicon substrates at ambient conditions by four solution processing methods, namely drop-casting, dip-coating, spin-casting and spray-coating. The CuPc films were studied by AFM, as the main technique, and complemented by micro-Raman spectroscopy. Essentially, such thin films consist of CuPc molecular nanoribbons of a fixed ~1 nm thickness. CuPc molecules are arranged in an in-plane direction and formed in stacks under a defined tilt angle with respect to the substrate surface (monolayer) or underlying CuPc layer (multilayer). The film morphology takes various forms depending on the solution concentration, number of layers, and the deposition method. For instance, the morphology varies from very wide (~600 nm) but flat (~1 nm) ribbons for films prepared by dip-coating to crystallized rod-like features (multi-layered ribbons) when obtained by spray-coating. The factors studied in this paper should be taken into consideration in designing and controlling the criteria for rigorous CuPc film architecture.