ATR (ataxia telangiectasia and Rad-3-related) is a protein kinase that maintains genome stability and halts cell cycle phase transitions in response to DNA lesions that block DNA polymerase movement. These DNA replication-associated features of ATR function have led to the emergence of ATR kinase inhibitors as potential adjuvants for DNA-damaging cancer chemotherapeutics. However, whether ATR affects the genotoxic stress response in non-replicating, non-cycling cells is currently unknown. We therefore used chemical inhibition of ATR kinase activity to examine the role of ATR in quiescent human cells. Although ATR inhibition had no obvious effects on the viability of non-cycling cells, inhibition of ATR partially protected nonreplicating cells from the lethal effects of UV and UV mimetics. Analyses of various DNA damage response signaling pathways demonstrated that ATR inhibition reduced the activation of apoptotic signaling by these agents in non-cycling cells. The pro-apoptosis/cell death function of ATR is likely due to transcription stress because the lethal effects of compounds that block RNA polymerase movement were reduced in the presence of an ATR inhibitor. These results therefore suggest that whereas DNA polymerase stalling at DNA lesions activates ATR to protect cell viability and prevent apoptosis, the stalling of RNA polymerases instead activates ATR to induce an apoptotic form of cell death in non-cycling cells. These results have important implications regarding the use of ATR inhibitors in cancer chemotherapy regimens.Ultraviolet (UV) photoproducts and other bulky DNA lesions block the progression of DNA and RNA polymerases and lead to the activation of various DNA damage responses that are regulated by the action of the ataxia telangiectasia and Rad-3-related (ATR) 3 protein kinase. For example, in response to DNA polymerase stalling and uncoupling from DNA helicase activity (1), ATR is thought to be recruited to singlestranded regions of DNA where it promotes a number of DNA metabolic processes that maintain genomic integrity (2-6), including replication fork stabilization, DNA synthesis and lesion bypass, homologous recombination, replication origin firing, and cell cycle delay. The importance of ATR kinase activity in these responses in replicating cells is evidenced by the fate of cells in which the catalytic activity of ATR has been genetically or pharmacologically inhibited following replication stress, which include apoptosis and entry into catastrophic mitoses (7-10). Thus, ATR helps replicating cells cope with DNA damage and replication stress by facilitating cellular processes that maintain genomic stability and avoid cell death. Given these features of ATR, there has been great interest in the development and use of selective small-molecule inhibitors of ATR kinase activity in cancer chemotherapy regimens in conjunction with compounds that damage DNA and generate replication stress (11-13). For example, several studies have shown that ATR inhibition sensitizes cancer cells to cell kill...