Ataxia telangiectasia [AT} is an autosomal recessive disease of unknown etiology associated with cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, and hypersensitivity to ionizing radiation. Although AT has been divided into four complementation groups by its radioresistant-DNA synthesis phenotype, the ATM gene has been isolated as the candidate gene responsible for all AT groups. We identified a new gene, designated NPAT, from the major AT locus on human chromosome Ilq22-q23. The gene encoded a 1421-amino-acid protein containing nuclear localization signals and phosphorylation target sites by cyclin-dependent protein kinases associated with E2F. The messenger RNA of NPAT was detected in all human tissues examined, and its genomic sequence was strongly conserved through eukaryotes, suggesting that the NPAT gene may be essential for cell maintenance and may be a member of the housekeeping genes. Analysis of the genomic region of NPAT surprisingly revealed that the gene existed only 0.5 kb apart from the 5' end of the ATM transcript with opposite transcriptional direction, it may be possible to propose the idea that the promoter region could be shared by both housekeeping genes and that each gene could influence the expression of the other.