Enteropathogenic Escherichia coli (EPEC) infections are a leading cause of infantile diarrhea in developing nations. Typical EPEC isolates are differentiated from other types of pathogenic E. coli by two distinctive phenotypes, attaching effacement and localized adherence. The genes specifying these phenotypes are found on the locus of enterocyte effacement (LEE) and the EPEC adherence factor (EAF) plasmid. To describe how typical EPEC has evolved, we characterized a diverse collection of strains by multilocus sequence typing (MLST) and performed restriction fragment length polymorphism (RFLP) analysis of three virulence genes (eae, bfpA, and perA) to assess allelic variation. Among 129 strains representing 20 O-serogroups, 21 clonal genotypes were identified using MLST. RFLP analysis resolved nine eae, nine bfpA, and four perA alleles. Each bfpA allele was associated with only one perA allele class, suggesting that recombination has not played a large role in shuffling the bfpA and perA loci between separate EAF plasmids. The distribution of eae alleles among typical EPEC strains is more concordant with the clonal relationships than the distribution of the EAF plasmid types. These results provide further support for the hypothesis that the EPEC pathotype has evolved multiple times within E. coli through separate acquisitions of the LEE island and EAF plasmid.Enteropathogenic E. coli (EPEC) infections are a leading cause of infantile diarrhea in developing nations (31, 37). A key characteristic of EPEC strains is the ability to intimately attach to intestinal epithelial cells and create attaching and effacing (AE) lesions (24). The AE phenotype is specified by genes of the locus of enterocyte effacement (LEE), a ϳ35-kb pathogenicity island located in the bacterial chromosome (23, 41). The LEE island comprises approximately 40 genes and encodes the components of a type III secretion system, various effector molecules, and the intimin adhesin (23,33,68). Intimin plays a crucial role in AE lesion formation (15) and is encoded by the highly polymorphic eae gene (1, 72), which can be divided into periplasmic, transmembrane, and extracellular domains (39). To date, more than 25 major allelic variants of eae have been described (36).Most typical EPEC strains fall into one of two phylogenetically distinct groups or clonal lineages, designated EPEC 1 and EPEC 2 (69), and differ from atypical EPEC and other types of pathogenic E. coli by their ability to form microcolonies on the surface of intestinal epithelial cells (4). This phenotype, termed localized adherence (LA), correlates with the presence of a large virulence plasmid called the EPEC adherence factor (EAF) plasmid (18). The EAF plasmids from different EPEC strains show considerable variation in size (ϳ85 to 110 kb) (48) and, presumably, gene content. Comparison of the complete EAF plasmid sequences from two prototypical EPEC strains (O127:H6 EPEC 1 strain E2348/69 and O111:NM EPEC 2 strain B171) indicates that the EPEC 2 plasmid of B171 carries fewer genes (80 v...