A warm degenerate plasma (containing ultra-relativistically or non-relativistically warm degenerate inertia-less electron species, non-relativistically warm degenerate inertial light nucleus species and stationary heavy nucleus species) is considered. The basic features of planar and non-planar solitary structures associated with the degenerate pressure-driven nucleus-acoustic waves propagating in such a warm degenerate plasma system are investigated. The reductive perturbation method, which is valid for small- but finite-amplitude solitary waves, is used. It is found that the effects of non-planar cylindrical and spherical geometries, non- and ultra-relativistically degenerate electron species and the temperature of degenerate electron species significantly modify the basic features (i.e. speed, amplitude and width) of the solitary potential structures associated with degenerate pressure-driven nucleus-acoustic waves. The warm degenerate plasma model under consideration is applicable not only to all cold white dwarfs, but also to many hot white dwarfs, such as DQ white dwarfs, white dwarf H1504+65, white dwarf PG 0948+534, etc.