Imaging systems are often modeled as continuous-to-discrete mappings that map the object (i.e. a function of continuous variables such as space, time, energy, wavelength, etc) to a finite set of measurements. When it comes to reconstruction, some discretized version of the object is almost always assumed, leading to a discrete-to-discrete representation of the imaging system. In this paper, we discuss a method for single-photon emission computed tomography (SPECT) imaging that avoids discrete representations of the object or the imaging system, thus allowing reconstruction on an arbitrarily fine set of points.