We investigate enumerability properties for classes of sets which permit
recursive, lexicographically increasing approximations, or left-r.e. sets. In
addition to pinpointing the complexity of left-r.e. Martin-L\"{o}f, computably,
Schnorr, and Kurtz random sets, weakly 1-generics and their complementary
classes, we find that there exist characterizations of the third and fourth
levels of the arithmetic hierarchy purely in terms of these notions.
More generally, there exists an equivalence between arithmetic complexity and
existence of numberings for classes of left-r.e. sets with shift-persistent
elements. While some classes (such as Martin-L\"{o}f randoms and Kurtz
non-randoms) have left-r.e. numberings, there is no canonical, or acceptable,
left-r.e. numbering for any class of left-r.e. randoms.
Finally, we note some fundamental differences between left-r.e. numberings
for sets and reals