Cryogen spray cooling (CSC) has been successfully implemented in laser dermatology such as the treatment of port wine stain. It can protect epidermis from irreversible thermal injuries and increase laser energy, leading to the improvement in therapeutic outcomes. Different from traditional steady spray cooling, CSC is highly transient with short spurt duration (several tens of milliseconds). Besides, CSC can achieve flashing atomization and fine droplets with simple structure nozzles by rapid release of superheat. In this chapter, the mechanism of CSC flashing spray, spray and thermal characteristics of droplets, the measurement method of transient temperature and algorithms for heat flux estimation, and the dynamic surface heat transfer and its relation with spray characteristics are fully discussed. Finally, the heat transfer enhancement of CSC is introduced including alternative cryogens, new nozzles, and hypobaric pressure method to increase the cooling ability, which is essential to improve therapeutic outcome, especially for darkly pigmented human skin.