This paper presents a comprehensive analysis, carried out by the molecular dynamics (MD) simulations, of the vibrations of silicon nanowire (SiNW) resonators, having diverse applications including biological and medical fields. The chosen approach allows us to obtain a better understanding of the nanowire (NW) materials’ characteristics, providing a more detailed insight into the behavior of nanostructures, especially when the topic of interest is relevant to their dynamics, interatomic interactions, and atoms trajectories’ prediction. We first simulate a SiNW to study its frequency of vibrations using MD simulations. Then, we add a molecule of human immunodeficiency virus as an example to investigate the potential of the SiNW resonator for the detection of tiny bio-objects. The developed technique and its application to the detection of tiny objects, such as viruses, are discussed in the context of several key effects pertinent to the design of SiNW.