This paper presents a comprehensive analysis, carried out by the molecular dynamics (MD) simulations, of the vibrations of silicon nanowire (SiNW) resonators, having diverse applications including biological and medical fields. The chosen approach allows us to obtain a better understanding of the nanowire (NW) materials’ characteristics, providing a more detailed insight into the behavior of nanostructures, especially when the topic of interest is relevant to their dynamics, interatomic interactions, and atoms trajectories’ prediction. We first simulate a SiNW to study its frequency of vibrations using MD simulations. Then, we add a molecule of human immunodeficiency virus as an example to investigate the potential of the SiNW resonator for the detection of tiny bio-objects. The developed technique and its application to the detection of tiny objects, such as viruses, are discussed in the context of several key effects pertinent to the design of SiNW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.