Alzheimer's disease (AD) levels have increased globally, which is considered the sixth reason for deaths. So, a requirement exists for economic and quantitative methods to follow up the gradual progression of AD. The current study presents a simulation for a non‐irradiated, safe, wearable, and noninvasive mobile approach for detecting the progression of Alzheimer's brain atrophy using the optical diffusion technique and for investigating the difference between the normal and the diseased brain. The virtual study was accomplished using COMSOL Multiphysics. The simulated head is implemented as the following: scalp, skull, cerebrospinal fluid, gray matter, and white matter. The optical properties of the heterogeneous tissue are observed using the fluence rate after irradiating the head with different wavelengths (630, 700, 810, 915, and 1000 nm) of lasers. Two assessment techniques were applied to evaluate the brain atrophy measurements; the first technique was an array of photodetectors, which were lined at the head posterior, while a matrix of photodetectors was applied over the head surface in the second technique. The results show that the surface photodetectors approach differentiates the normal from AD brains without measuring the brain atrophy percentages by applying 630 nm. The array of photodetectors distinguishes normal from AD brains without detecting the brain atrophy percentages when the wavelengths 630, 700, and 810 nm were applied. The line detector at 1000 nm evaluates the brain atrophy percentages with AD. The future explores applying those techniques in vivo and analyzing the information by the spectrometer for extensively safer early detection of neural disorders.