In the study of the seepage characteristics of layered rock slope under rainfall conditions, the majority of previous research has considered the hydraulic conduction to be isotropic, or only considered the anisotropy ratio of the hydraulic conductivity, ignoring the anisotropy angle. In the current study, a layered rock slope in the Pulang region was selected as an example. Then, based on the fitting parameters of the Van Genuchten model, pore water pressure sensitivity analyses of the layered rock slope were carried out. The anisotropy ratio and anisotropy angle were used to analyze the sensitivity of the seepage and stability of the layered rock slopes. The results show that as the anisotropy angle of hydraulic conductivity of layered rock slope decreased, the maximum volume water content of surface (MWCS) of layered rock slope gradually increased. Additionally, as the anisotropy ratio decreased and the anisotropy angle increased, the rising heights of the groundwater (RHG) of layered rock slope gradually increased. When the hydraulic conduction of layered rock slope was considered isotropic, the factor of safety (FS) tended to be overestimated. As the anisotropy ratio decreased and the anisotropy angle increased, the factor of safety (FS) of layered rock slope decreased. Prevention should be the objective for rock slopes with larger dip angles in the bedding plane in the Pulang region. This study provides feasible schemes for the evaluation of the seepage and stability of layered rock slopes in Pulang region of southwestern China.