Computational fluid dynamics (CFD) is a widely used tool for investigating fluid flows in bioreactors. It has been used in the biopharmaceutical industry for years and has established itself as an important tool for process engineering characterisation. As a result, CFD simulations are increasingly being used to complement classical process engineering investigations in the laboratory with spatially and temporally resolved results, or even replace them when laboratory investigations are not possible. Parameters that can be determined include the specific power input, Kolmogorov length, hydrodynamic stress, mixing time, oxygen transfer rate, and for cultivations with microcarriers, the NS1 criterion. In the first part of this series, a literature review illustrates how these parameters can be determined using CFD and how they can be validated experimentally. In addition, an overview of the hardware and software typically used for bioreactor characterisation will also be provided, including process engineering parameter investigations from the literature. In the second part of this series, the authors’ research results will be used to show how the process engineering characterisation of mechanically driven bioreactors for the biopharmaceutical industry (stirred, orbitally shaken, and wave-mixed) can be determined and validated using CFD.