1987
DOI: 10.1017/s0022112087000594
|View full text |Cite
|
Sign up to set email alerts
|

Numerical and experimental study of the transformation of a solitary wave over a shelf or isolated obstacle

Abstract: In order to model the evolution of a solitary wave near an obstacle or over an uneven bottom, the long-wave equations including curvature effects are introduced to describe the deformation and fission of a barotropic solitary wave passing over a shelf or an obstacle. The numerical results obtained from these equations are shown to be in good agreement with an analytical model derived by Germain (1984) in the framework of a generalized shallow-water theory, and with experimental results collected in a large cha… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

20
177
0
7

Year Published

1996
1996
2016
2016

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 180 publications
(204 citation statements)
references
References 9 publications
20
177
0
7
Order By: Relevance
“…The numbers of wave fission are related to the step height and incident wave height. Readers can refer detail discussions in Seabra-Santoes et al (1987) [10] and experimental work of Losada et al (1989) [12]. As L 2 =60, it represents a channel with a sudden expansion of the width.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation
“…The numbers of wave fission are related to the step height and incident wave height. Readers can refer detail discussions in Seabra-Santoes et al (1987) [10] and experimental work of Losada et al (1989) [12]. As L 2 =60, it represents a channel with a sudden expansion of the width.…”
Section: Resultsmentioning
confidence: 99%
“…The related problems of solitary wave fission on a shelf have been investigated by many researchers in last two decades. The fission process that separates an incident solitary wave into a sequence of solitary waves with amplitude in decreasing order after climbing upon a two-dimensional (2D) shelf was presented in numerical solutions and laboratory measurements by [10]. The wave fission in a three-dimensional canal with an uneven bottom and a wider channel width has been noticed to be very different from that in 2D case.…”
Section: Introductionmentioning
confidence: 99%
“…C учетом формул, выведенных в работе [27], коэффициенты трансформации можно уточ-нить, учитывая конечность амплитуды набегающего солитона. Сохранение формы импульсов и их длительностей при трансформации солитонов на резком скачке глубины у края уступа нашло подтверждение в последующих численных расчетах [29] и лабораторных экспериментах [30,31]. После трансформации в прошедшем и отраженном импульсах нарушается баланс между амплиту-дой и длительностью, характерный для стационарного солитона.…”
Section: T G X T H T G T G H H X T X Tunclassified
“…В последующих лабораторных экспериментах изучалась лишь трансформация длинных (по сравнению с глубиной бас-сейна) уединенных волн. Так, в работе [30] авторы приводят результаты большой серии экспериментов, в которых менялась высота подводного уступа и амплитуда набегающей уединенной волны. При этом амплитуды волн в ряде случаев были не ма-лыми, так что наблюдались нелинейные эффекты, приводящие даже к обрушению прошедших за уступ волн.…”
Section: T G X T H T G T G H H X T X Tunclassified
“…Later, these equations were independently rediscovered by Su and Gardner [64] and by Green, Laws and Naghdi [38]. The extension of Serre equations for general uneven bathymetries was derived by Seabra-Santos et al [58]. In the Soviet literature these equations were known as the Zheleznyak-Pelinovsky model [75].…”
Section: Introductionmentioning
confidence: 99%