In order to model the evolution of a solitary wave near an obstacle or over an uneven bottom, the long-wave equations including curvature effects are introduced to describe the deformation and fission of a barotropic solitary wave passing over a shelf or an obstacle. The numerical results obtained from these equations are shown to be in good agreement with an analytical model derived by Germain (1984) in the framework of a generalized shallow-water theory, and with experimental results collected in a large channel equipped with a wave generator. Given the initial conditions, i.e. amplitude of the incident solitary wave, water depth in the deep region, and height of the shelf or the barrier, it is possible to predict the amplitude and number of the transmitted solitary waves as well as the amplitude of the reflected wave, and to describe the shape of the free surface at any time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.