2022
DOI: 10.1002/num.22937
|View full text |Cite
|
Sign up to set email alerts
|

Numerical approximations for the nonlinear time fractional reaction–diffusion equation

Abstract: In this article, we propose an implicit pseudospectral scheme for nonlinear time fractional reaction–diffusion equations with Neumann boundary conditions, which is based upon Gauss–Lobatto–Legendre–Birkhoff pseudospectral method in space and finite difference method in time. A priori estimate of numerical solution is given firstly. Then the existence of numerical solution is proved by Brouwer fixed point theorem and the uniqueness is obtained. It is proved rigorously that the fully discrete scheme is unconditi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 25 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?