Background: As a control strategy of industrial robots, sliding mode control has the advantages of fast response and simple physical implementation, but it still has the problems of chattering and low tracking accuracy caused by chattering. This paper proposes a new sliding mode control strategy for the application of industrial robot control, which effectively solves these problems. Methods: In this paper, a deep deterministic policy gradient–nonlinear nonsingular fast terminal sliding mode control (DDPG–NNFTSMC) strategy is proposed for industrial robot control. In order to improve the tracking control accuracy and anti-interference ability, DDPG is used to approach the uncertainties of the system in real time, which ensures the robustness of the system in various uncertain environments. Lyapunov function is used to prove the stability and finite time convergence of the system. Compared with the nonsingular terminal sliding mode control (NTSMC), the time to reach the equilibrium point is shorter. With the help of MATLAB/Simulink, the tracking accuracy and control effects are compared with traditional terminal sliding mode control (TSMC), NTSMC and radial basis function–sliding mode control (RBF–SMC), the results showed that it had the advantages of nonsingularity, finite time convergence, small tracking error. The motion accuracy and anti-interference ability of the uncertain manipulator system was further improved, and the chattering problem of the system in the motion process is effectively eliminated.