2009
DOI: 10.1137/070683787
|View full text |Cite
|
Sign up to set email alerts
|

Numerical Dispersive Schemes for the Nonlinear Schrödinger Equation

Abstract: We consider semidiscrete approximation schemes for the linear Schrödinger equation and analyze whether the classical dispersive properties of the continuous model hold for these approximations. For the conservative finite difference semidiscretization scheme we show that, as the mesh size tends to zero, the semidiscrete approximate solutions lose the dispersion property. This fact is proved by constructing solutions concentrated at the points of the spectrum where the second order derivatives of the symbol of … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

4
71
0
3

Year Published

2010
2010
2023
2023

Publication Types

Select...
6
3

Relationship

1
8

Authors

Journals

citations
Cited by 63 publications
(78 citation statements)
references
References 22 publications
4
71
0
3
Order By: Relevance
“…[7]). As shown in [4], similar pathological high frequency phenomena have been observed in the context of the Strichartz dispersive estimates for the finite difference approximations of the Schrödinger equation.…”
Section: Introduction and Problem Formulationsupporting
confidence: 67%
See 1 more Smart Citation
“…[7]). As shown in [4], similar pathological high frequency phenomena have been observed in the context of the Strichartz dispersive estimates for the finite difference approximations of the Schrödinger equation.…”
Section: Introduction and Problem Formulationsupporting
confidence: 67%
“…Ce type de phénomène pathologique apparaît aussi au niveau des estimations dispersives de Strichartz associéesà l'équation de Schrödinger semi-discretisée en espace par différences finies, cf. [4]. L'avantage de notre construction de paquets d'ondes numériquesà haute fréquence est qu'elle peutêtre généraliséeà d'autres approximations plus sophistiquées de l'équation des ondes comme celles obtenues par les méthodes de Galerkin discontinus ou par deséléments finis classiques d'ordre supérieur, où le symbole "numérique" en Fourier du Laplacien est une matrice donnant lieuà plusieurs relations de dispersion, cf.…”
Section: Résuméunclassified
“…The resolvent estimates are also a well-known tool for dealing with Strichartz estimates, see [35]. Again, we think that this approach can yield new results and uniform dispersive estimates for discrete Schrödinger and wave equations, similarly as what has been done in [23,22,24].…”
mentioning
confidence: 64%
“…Let us mention here only the works [5,25,28,29,30,33] where the uniform stabilization of discrete hyperbolic equations is achieved and [15] where uniform Strichartz's estimates for the discrete Schrödinger equation are obtained by using this method.…”
Section: Uj+2(t)−4uj+1(t)+6uj (T)−4uj−1(t)+uj−2(t)mentioning
confidence: 99%