1956
DOI: 10.1090/s0025-5718-1956-0086389-6
|View full text |Cite
|
Sign up to set email alerts
|

Numerical integration over simplexes and cones

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
52
0
4

Year Published

1969
1969
2020
2020

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 86 publications
(56 citation statements)
references
References 2 publications
0
52
0
4
Order By: Relevance
“…La position des connecteurs sur chaque face triangulaire étant libre, il est intéressant pour la suite de les placer aux trois points définis par Hammer pour l'intégration exacte d'une fonction quadratique sur un domaine triangulaire (Hammer et al, 1956).…”
Section: Choix Des Connecteursunclassified
“…La position des connecteurs sur chaque face triangulaire étant libre, il est intéressant pour la suite de les placer aux trois points définis par Hammer pour l'intégration exacte d'une fonction quadratique sur un domaine triangulaire (Hammer et al, 1956).…”
Section: Choix Des Connecteursunclassified
“…Np NpitM JC (r) = N I PjP (r) + I lnij (r) n-l n=NP+l (4) where Np is the number of half basis functions jP, Ni the number of full basis functions jt, and IP and II the unknown current coefficients on the conducting surface.…”
Section: Ill Mom and Numerical Implementationmentioning
confidence: 99%
“…In this work, fully symmetric quadrature formulas have been used to perform the surface and volume integrations. In the former case, a 13-point (7-degree) rule [4] has been successfully used even in the case of triangles of aspect ratio greater than 10. In the latter case, various rules have been tested in order to assure a sufficient accuracy when distorted tetrahedrons are utilized.…”
Section: Ill Mom and Numerical Implementationmentioning
confidence: 99%
“…We get then the matrices R.. , from which we draw the stiffness matrix. ID To estimate numerically the integrals G , we use the 7-points formula given in [23]. We found a satisfying accuracy on using these formulas on 64 subtriangles by dividing each side of the unit triangle in 8 equal parts.…”
Section: Derivation Of the Stiffness Matrix Of An Elementmentioning
confidence: 99%